

Single-Cell Live Image Analysis

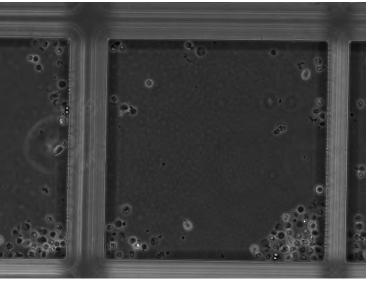
Authors

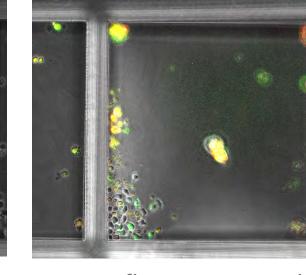
Wael GHARBI Guillaume FIDANZA

Supervision

TELECOM SudParis

Nicolas ROUGON


GENETHON Daniel STOCKHOLM

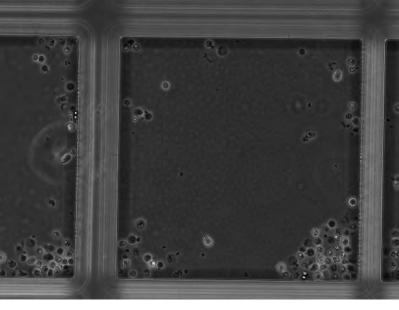

MOTIVATION & OBJECTIVES

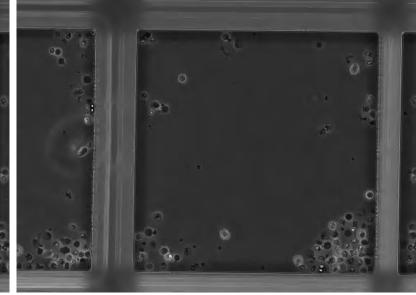
Single-cell microscopic imaging

- Single-cell imaging in phase-contrast and fluorescence microscopy allows for monitoring in vivo human T cells confined in μ-trap arrays
- Analyzing time-lapse video sequences could bring new insights on the way T cells evolve into T-reg cells which govern immune tolerance
- This requires image processing methods for automated cell counting, segmentation and tracking, coupled to data processing techniques for understanding cell interactions

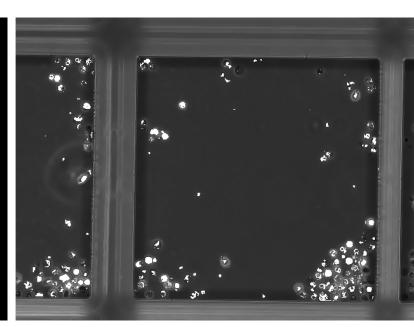
phase-contrast microscopy

fluorescence microscopy


Challenges


- Detect all the objects in the field of view
- Distinguish between impurities, dead and alive cells
- Track individual cell to reconstruct trajectories

MATERIAL & METHODS


- **Setup:** Human T cell lines in μ-trap arrays with macrophages and beads connected to specific molecules
- **Database:** 12 time-lapse video sequences = phase-contrast images of μ -grid sub-regions at regular time intervals during 24 hours + fluorescence images acquired 2-3 minutes after phase-contrast data
- \blacksquare μ -grid segmentation using temporal mathematical morphology on frames groups
- **Object segmentation** in each frame:
 - > Preprocessing: μ-trap background texture homogenization via PDE filtering (anisotropic diffusion with Tukey biweight-based conduction function)
 - > Detection using geodesic morphology using μ-trap background and object dark sub-region markers

RESULTS

original frame

 μ - trap texture filtering

μ-grid-segmentation

Sound performances showing high sensitivity / low specificity: all objects are detected, including beads and impurities

Spurious over-segmentation artefacts can occur due to possibly non simply connected object markers

detected objects

CONCLUSION & PERSPECTIVES

- Using temporal features would improve robustness and allow for distinguishing between dead/alive cells
- Specificity could be enhanced by relaxing the requirement to detect impurities
- Future work:
 - > implement a cell tracker based on frame-byframe object segmentations
 - > use fluorescence data to discriminate T-reg cells