

Assessment of morphological changes in pulmonary induced pathology: an animal study with micro-CT

Introduction

Project team

Thibaut Remark Natalie Sotomayor

Supervision

Catalin Fetita Sameh Hamrouni

Context

 Enable inhaled therapy quantification for two types of pathology, asthma and emphysema, with test in small animal

Objectives

- From animal images (rat) acquired with micro-CT:
 - Develop an algorithm to correctly identify the lungs and the airways
 - Create a 3D rendering model of these structures

Methods

Image: segmentation Image: segmentation

- 3D image enhancement: reducing the noise by means of filtering, preserving the borders, and choosing the best luminance range
 Gaussian and projection-filter backprojection (P-FBP) approaches
- Lung segmentation: investigation of morphological methods performing both in 2D and 3D spaces – grayscale reconstruction by erosion
- Airway segmentation: 2D and 3D methods for candidates detection and distal segments reconstruction – *multi-scale connection cost and controlled region growing*
- 3D model visualization volume rendering
- Implementation: C++ language

Achievements

3D modeling of lungs and airways in rat (2D and 3D segmentation methods):

- C++ software which correctly identifies the lungs
- C++ software which identifies the airway candidates as a starting point for future reconstruction of distal segments

airway candidates 3D lung s

3D lung segmentation

catalin.fetita@telecom-sudparis.eu

https://artemis.telecom-sudparis.eu

